Neuroscience, Meet Clinical Psychology


Alcoholism and Substance Abuse

EEG investigations of alcoholics (and the children of alcoholics) have documented that even after prolonged periods of abstinence, they frequently have lower levels of alpha and theta brainwaves and an excess of fast beta activity. This suggests that alcoholics and their children tend to be hardwired differently from other people, making it difficult for them to relax. Following the intake of alcohol, however, the levels of alpha and theta brainwaves increase. Thus individuals with a biological predisposition to develop alcoholism (and their children) are particularly vulnerable to the effects of alcohol because, without realizing it, alcoholics seem to be trying to self-medicate in an effort to treat their own brain pathology. The relaxing mental state that occurs following alcohol use is highly reinforcing to them because of their underlying brain activity pattern. Several research studies now show that the best predictor of relapse is the amount of excessive beta brainwave activity that is present in both alcoholics and cocaine addicts (Bauer, 1993, 2001; Prichep, Alper, Kowalik, John, et al., 1996; Prichep, Alper, Kowalik, & Rosenthal, 1996; Winterer et al., 1998).

Recently, neurofeedback training to teach alcoholics how to achieve stress reduction and profoundly relaxed states through increasing alpha and theta brainwaves and reducing fast beta brainwaves has demonstrated promising potential as an adjunct to alcoholism treatment. Peniston and Kulkosky (1989) used such training in a study with chronic alcoholics compared to a nonalcoholic control group and a control group of alcoholics receiving traditional treatment. Alcoholics receiving 30 sessions of neurofeedback training demonstrated significant increases in the percentages of their EEG that was in the alpha and theta frequencies, and increased alpha rhythm amplitudes. The neurofeedback treatment group also demonstrated sharp reductions in depression when compared to controls.

Alcoholics in standard (traditional) treatment showed a significant elevation in serum beta-endorphin levels (an index of stress and a stimulant of caloric [e.g., ethanol] intake), whereas those with neurofeedback training added to their treatment did not demonstrate this increase in beta-endorphin levels. On 4-year follow-up checks (Peniston & Kulkosky, 1990), only 20% of the traditionally treated group of alcoholics remained sober, compared with 80% of the experimental group who had received neurofeedback training. Furthermore, the experimental group showed improvement in psychological adjustment on 13 scales of the Millon Clinical Multiaxial Inventory compared to the traditionally treated alcoholics who improved on only two scales and became worse on one scale.

On the 16-PF personality inventory, the neurofeedback training group demonstrated improvement on seven scales, compared to only one scale among the traditional treatment group. Similar positive results with 92% sobriety on 21-month follow-ups were reported by Saxby and Peniston (1995) in 14 depressed alcoholics, and encouraging results were reported on 3-year follow-ups in a treatment program with native Americans (Kelley, 1997).


Scott, Kaiser, Othmer, and Sideroff (2005) conducted a randomized controlled study with 121 individuals undergoing an inpatient substance abuse program. The patients received 40 to 50 treatment sessions. Persons who had neurofeedback added to their treatment remained in therapy significantly longer—an important factor in the treatment of substance abuse. On 1-year follow-up, 77% of patients receiving neurofeedback remained sober versus only 44% of traditional treatment patients. Significant differences were found in measures of attention and in seven scales on the Minnesota Multiphasic Personality Inventory–2 compared with improvement on only one scale in those receiving traditional treatment. Reports from a similar treatment program (Burkett, Cummins, Dickson, & Skolnick, 2005) with 270 homeless crack cocaine addicts showed that the addition of neurofeedback to treatment more than tripled the length of stay in the recovery center. On 1-year follow-up of the 94 patients who completed treatment, 95.7% were now maintaining a residence, 93.6% were employed or in schooling, 88.3% had no further arrests, and 53.2% had been alcohol and drug free 1 year, whereas another 23.4% had used alcohol or dugs only one to three times, corroborated by urinalysis.

Arani, Rostami, and Nostratabadi (2010) compared results from 30 sessions of neurofeedback being provided to opioid dependent patients undergoing outpatient treatment (methadone or Buprenorpine maintenance), compared with a control group that received outpatient treatment alone. Patients receiving neurofeedback showed significantly more improvements in outcome measures (e.g., of hypochondriasis, obsessing, interpersonal sensitivity, aggression, psychosis, anticipation of positive outcome, and desire to use drugs) and on QEEGs.

Preliminary research (Horrell et al., 2010) has suggested that neurofeedback may also have potential to reduce drug cravings in cocaine abusers.
The evidence reviewed validates the immensepotentialthatneurofeedbacktreatment has to likely double if not triple the outcome rates in alcoholism and substance abuse treatment when it is added as an additional component to a comprehensive treatment program (Sokhadze, Cannon, & Trudeau, 2008). It may have real potential in not only treating but also remediating some of the serious damage to the brain that occurs through drug abuse (e.g., Alper et al., 1998; Prichep, Alper, Kowalik, & Rosenthal, 1996; Struve, Straumanis, & Patrick, 1994).


3800 N. Wilke Suite 160

Arlington Heights, IL 60004